Senin, 02 April 2012

penyebab pemanasan global

Akibat Pemanasan Global

Sejak kira-kira tigapuluh tahun yang lalu, para ilmuwan sudah memberi peringatan pada dunia berkenaan dengan akibat buruk yang ditimbulkan oleh Global Warming atau Pemanasan Global, yang merupakan ancaman paling serius bagi umat manusia setelah perang dingin.
  • Akibat perubahan iklim yang disebabkan oleh Pemanasan Global, glacier di enam benua mulai mencair, lautan es di Kutub Utara dan Kutub Selatan, demikian juga lapisan es di Greenland, juga gletser di puncak-puncak gunung mulai mencair, ini mengakibatkan naiknya permukaan laut, badai yang menghancurkan muncul silih berganti, banjir dan longsor semakin sering terjadi, kekeringan yang melanda pertanian bermunculan di mana-mana, menyebabkan persediaan makanan dan air minum di dunia semakin menipis.
  • Penyakit tropis menyebar, malaria, demam dengue, demam kuning menyebar ke daerah yang sebelumnya tidak pernah dijangkiti, dan bukan hanya itu, penyakit ini diketahui menjadi semakin ganas. Belum lagi meningkatnya jumlah manusia yang terserang penyakit seperti kanker kulit, kolera dan sebagainya yang belakangan ini semakin mewabah, dan mencakup daerah yang semakin luas.
  • Pemanasan laut menyebabkan rusaknya karang dan matinya kehidupan di situ. Diperkirakan dalam waktu 50 tahun ke depan, seluruh karang laut di dunia ini akan musnah akibat pemanasan laut dan polusi akibat kegiatan manusia.
  • Kerugian lain yang segera akan terjadi adalah semakin berkurangnya keaneka-ragaman hayati dan punahnya beberapa spesies satwa karena perubahan musim, siklus kehidupan, waktu migrasi, berkurangnya daerah jelajah serta berkurangnya persediaan makanan mereka.
Sampai tahun 1950, gletser di sebuah daerah di Alaska masih nampak utuh, belum terpengaruh oleh Pemanasan Global (gambar kiri), namun pada tahun 2002 gletser sudah hampir hilang dari kawasan itu. Dalam gambar ini terlihat salju yang dulunya menyelimuti gunung juga sudah menipis (gambar kanan).
Harus segera dicari jalan untuk mengatasinya
Hal di atas adalah sedikit dari akibat buruk yang disodorkan ke hadapan kita, dan yang harus segera dicarikan jalan keluar guna mengatasinya. Sudahkah kita melakukan sesuatu untuk mengatasi masalah besar ini? Apakah kita hanya berpangku tangan tanpa upaya apapun untuk menanggulanginya?
Saat ini Pemanasan Global sudah dianggap sebagai bahaya maha besar yang harus segera diatasi secara kolektif, di mana setiap negara dan setiap pemerintah harus bekerja sama dan segera mempromosikan kesadaran lingkungan kepada warga-negara mereka, bagaimana mereka memberikan kontribusi dalam upaya mengatasi situasi yang amat serius ini tanpa mementingkan diri sendiri.
Kerjasama itu lebih dimaksudkan untuk melakukan riset dan eksperimen atas pengaruh jangka panjang perubahan iklim. Bagaimana itu mempengaruhi hutan belantara kita maupun penampung air seperti danau, sungai, laut serta kehidupan masyarakat, satwa dan tumbuhan yang tergantung padanya.
Perlu dipropagandakan cara-cara mengatasinya
Menjelaskan masalah lingkungan seperti ini sangat penting dalam upaya menghambat pengaruh dan peningkatan Pemanasan Global. Kita perlu mempelopori pengurangan emisi karbon serta gas yang mengakibatkan efek rumah kaca, memberikan pendidikan pada masyarakat luas tentang masalah perubahan iklim serta cara praktis apa yang dapat dilakukan untuk segera mengatasinya.
Seharusnya setiap negara memetakan berapa banyak karbon dioksida (CO2) dan efek rumah kaca yang mereka timbulkan dan mereka tebarkan ke atmosfir dan dengan cara yang sama menentukan berapa besar mereka harus menghijaukan lingkungan melalui penghutanan kembali hutan yang gundul, pedesaan dan pedalaman dengan menanam pepohonan di daerah itu, menghentikan penggundulan hutan serta penebangan liar, guna menetralkan gas-gas berbahaya yang ditebarkan ke udara. Sekali gas ini berada di atmosfir, dia akan tetap di sana dalam jangka waktu yang sangat lama sehingga akan menahan panas atmosfir bagian bawah dan memancarkan sebagian daripadanya kembali ke bumi, sehingga bumi menjadi semakin panas.
Karbon dioksida dan gas rumah kaca lain yang demikian besar jumlahnya di atmosfir akan mengakibatkan naiknya suhu permukaan bumi, sehingga menyebabkan kekeringan, perubahan iklim, mencairnya glasier di Kutub Utara, juga gletser di puncak-puncak gunung, naiknya permukaan laut, banjir, badai, gelombang laut yang sangat tinggi, dan itu tidak saja akan mengacaukan keseimbangan alami iklim di bumi, tetapi juga keseimbangan ekologi lingkungan, menyebabkan longsor, gempa, meletusnya gunung berapi, naiknya suhu air laut yang pada gilirannya akan mengurangi populasi satwa, tumbuh-tumbah dan sebagainya, bahkan beberapa di antaranya akan punah.
Apa yang dapat kita lakukan?
Lewat kesadaran lingkungan, setiap orang dapat memberikan kontribusi dengan cara sederhana mereka masing-masing dalam menanggulangi perubahan iklim. Kita harus mulainya dari diri kita sendiri, lingkungan kecil kita sendiri. Setiap hal kecil yang dapat kita lakukan di rumah, segera kita lakukan, seperti misalnya meminimalkan penggunaan peralatan atau mesin yang menghasilkan gas sebelum kita bisa benar-benar menyingkirkannya.
Untuk memaksa pemerintahnya agar lebih serius menangani Pemanasan Global ini, banyak orang di Amerika berkampanye agar orang memilih Presiden dan anggota DPR yang punya kepedulian terhadap penanggulangan Pemanasan Global, yang tidak peduli tidak perlu dipilih, sehingga masalah serius yang mempengaruhi keselamatan umat manusia dan masa depan dunia ini lebih diperhatikan secara serius.
Salah satu tanggung jawab vital mereka yang mewakili publik adalah melindungi anak-cucu kita serta generasi mendatang dari kerusakan lingkungan yang akibatnya nanti harus mereka tanggung.
Kalau saja kita bisa mendengar suara generasi mendatang, kita akan mendengar seruan mereka agar kita segera bertindak menanggulangi Pemanasan Global. Anak-cucu yang sekarang belum lahir itu akan menanggung beban berat akibat kelalaian kita.

Sabtu, 31 Maret 2012

bumi semakin panas


Oleh : Wothson G J Sinaga, S.Pd. Belakangan hari hingga saat ini atmosfer udara kita begitu terasa panas, hal ini terbukti betapa gerahnya udara hampir disepanjang waktu, baik pagi, malam apalagi siang. Sering terjadi ketika baru selesai mandi untuk menyejukkan tubuh dari kegerahan malah langsung keringatan. Sedemikian gerahnya udara dan panas bumi pada saat ini, sehingga keringat pun sudah menjadi pelanggan setia tubuh.
Seharusnya bulan ini masih bulan penghujan hingga akhir bulan April, namun kenyataannya walaupun hujan suhu udara masih saja terasa begitu gerah dan panas. Bisa dikatakan hujan yang turun beberapa kali hanya sebagai penyiram debu saja. Karena biasanya jika hujan udara yang dirasakan akan sedikit lebih adem atau sejuk, namun tidak lagi saat ini.

Jika dilihat dari posisi Sumatera Utara yang berada diantara 10-40 derajat Lintang Utara (LU) dan 980-1000 Bujur Timur (BT), maka dapat dipastikan iklim yang terdapat di wilayah ini adalah tropis atau panas. Iklim ini juga dipengaruhi oleh angin Passat yang karena perubahan arah melalui Samudera Pasifik berubah menjadi angin Musson. Hal ini membuat wilayah Sumatera Utara termasuk wilayah yang memiliki suhu udara rata-rata tinggi, juga karena letak geografisnya dan posisi matahari yang sepertinya selalu vertikal.

Oleh sebab itu tidak heran walau bekerja di ruangan full air conditioner (pendingin ruangan) namun kegerahan tersebut masih bisa dirasakan, apalagi berada di luar ruangan. Menurut catatan yang tertulis, biasanya kelembaban udara rata-rata pada iklim tropis seperti ini adalah 78 persen-91 persen dengan penyinaran matahari kira-kira 43 persen. Namun sepertinya angin membawa suhu yang cukup kering dan panas sehingga membuat udara menjadi cukup gerah. Sepertinya satu mesin pendingin tidak cukup untuk menetralisasi suhu udara yang gerah seperti sekarang.

Isu ketidaknyamanan suhu bumi ini sudah sering kita dengar dengan kalimat Global Warming (pemanasan global), dimana terjadi perubahan suhu bumi yang tidak stabil dan semakin meningkat tiap derajat celsiusnya. Untuk Sumatera Utara pada tahun 2011 perubahan iklim tersebut terjadi saat penurunan jumlah hujan di musim kemarau sekitar 10 persen, boleh jadi saat ini meningkat lagi.

Fakta dari fenomena terjadinya peningkatan suhu udara adalah disebabkan oleh emisi karbon yang banyak disebabkan oleh kegiatan industri. Apalagi rata-rata sektor perekonomian di Sumatera Utara memproduksi emisi Gas Rumah Kaca (GRK). Emisi gas rumah kaca tersebut dilepas ke udara dan terdiri dari uap air, karbondioksida, metana, nitrogen oksida dan jenis emisi lainnya dari berbagai proses manufaktur. Seluruh zat emisi gas rumah kaca tersebut telah terkumpul dan terakumulasi pada lapisan atmosfer dan menipiskan lapisan ozon, yakni lapisan yang melindungi kita dari kontak langsung dengan sinar matahari yang dapat menyebabkan kanker kulit dan penyakit lainnya.

Memulai Hidup Go Green

Betapa mengejutkan nantinya dampak dari pemanasan global tersebut. Bukan hanya sekedar mengalami gerah, namun juga kemungkinan penyakit yang berasal dari zat-zat berbahaya yang dilepas ke lapisan atmosfer. Sementara kita hidup dengan zat berbahaya tersebut tanpa mau untuk menyadarkan diri betapa gentingnya situasi ini, bagi lingkungan dan generasi penerus. Jumlah zat berbahaya tersebut semakin meningkat setiap waktunya dan dilepas ke atmosfer yang menaikkan suhu udara.

Zat berbahaya bagi atmosfer dan lapisan ozon bersumber dari bahan bakar fosil (minyak dan batubara), limbah industri, kayu bakar, dan lainnya. Mau tidak mau memang contoh dari sumber zat berbahaya ini adalah sesuatu yang dekat dengan kita. Namun yang jadi permasalahan pokoknya adalah saat kita bertekad untuk mengurangi emisi gas rumah kaca tersebut. Banyak orang sudah tahu apa itu emisi gas rumah kaca, mengerti pemanasan global namun belum mengerti dan mau bertindak untuk melakukan perubahan penghijauan.

Beberapa cara dapat dilakukan untuk mengurangi emisi gas rumah kaca ini, diantaranya adalah mengurangi pemakaian bahan bakar fosil seperti mengkonversikannya ke gas, menghentikan pembalakan liar terhadap hutan, karena hutan mampu menyerap karbon dan merehabilitas kawasan sekitarnya. Menerapkan pembangunan rumah dan gedung berkonsep ramah lingkungan, mengefektifkan pengolahan sampah rumah tangga, dan mengurangi pemakaian tisu dan menghemat pemakaian kertas.

Dari beberapa cara tersebut diatas, yang cukup berdampak adalah program penghijauan kembali yakni penanaman pohon. Bagi para penggiat dunia industri yang menghasilkan limbah, alangkah baiknya juga memiliki sebuah manajemen limbah yang bagus dan jangan lepas tangan dengan membuang limbah sembarangan tanpa pendauran ulang. Kita juga baiknya mendukung Pemerintah yang berkomitmen untuk menurunkan emisi Gas Rumah Kaca yang meliputi bidang pertanian, kehutanan, lahan gambut, energi dan transportasi, industri dan pengelolahan limbah. Dan pemerintah terkait juga diharapkan giat memantau, mengawasi bahkan mendisiplinkan industri-industri nakal yang tidak ramah lingkungan. Mari Go Green.***

gurun pasir sahara

Gurun Sahara

Sahara dilihat dari satelit
Gurun Sahara adalah nama sebuah padang pasir terbesar di dunia. Nama "Sahara" diambil dari bahasa Arab yang berarti "padang pasir". Bahasa Arab pada gilirannya mengambil dari bahasa Sumeria.
Sahara terletak di utara Afrika dan berusia 2,5 juta tahun. Padang pasir ini membentang dari Samudra Atlantik ke Laut Merah. Dari Laut Tengah di utara sampai ke Sahel di sebelah selatan. Dari Mauritania di sebelah barat ke Mesir di sebelah timur. Padang pasir ini membagi benua Afrika menjadi Afrika Utara dan Afrika "yang sejatinya". Kedua bagian benua ini sangat berbeda, baik secara iklim maupun budaya. Luas padang pasir ini sekitar 9.000.000 km2.

miniatur kereta terbesar di dunia


Miniatur Kereta Terbesar di Dunia

Layout mainan kereta model terbesar di dunia ada di Hamburg, Jerman. Keren gan.
Dibuat oleh dua bersaudara Frederick dan Gerrit Braun, dinamakan "Miniatur Wunderland".



Sedikit areanya


Nontonnya sampe bertingkat












Gedung-gedungnya

Ada kebakaran gan!


Stadion Hamburg lagi ada pertandingan


Pegunungan


skala: HO
lama pembangunan: 500.000 jam sejak th. 2000.
luasnya: lebih dari 1150m2
ada 900 lokomotif dan 12000 gerbong beroperasi menurut jadwal
display 300.000 lampu jalan, rumah dan kasino
hampir 250.000 pohon dipasang
jumlah manusia mini ada 200.000

perkembangan teknologi dan infrmasi di indonesia

PERKEMBANGAN TEKNOLOGI INFORMASI DI INDONESIA

BAB 1 PENDAHULUAN
Teknologi Informasi adalah suatu teknologi yang digunakan untuk mengolah data, termasuk memproses, mendapatkan, menyusun, menyimpan, memanipulasi data dalam berbagai cara untuk menghasilkan informasi yang berkualitas, yaitu informasi yang relevan, akurat dan tepat waktu, yang digunakan untuk keperluan pribadi, pendidikan, bisnis, dan pemerintahan dan merupakan informasi yang strategis untuk pengambilan keputusan. Teknologi ini menggunakan seperangkat komputer untuk mengolah data, sistem jaringan untuk menghubungkan satu komputer dengan komputer yang lainnya sesuai dengan kebutuhan, dan teknologi telekomunikasi digunakan agar data dapat disebar dan diakses secara global. Peran yang dapat diberikan oleh aplikasi teknologi informasi dan teknologi komunikasi ini adalah mendapatkan informasi untuk kehidupan pribadi seperti informasi tentang kesehatan, hobi, rekreasi, dan rohani. Kemudian untuk profesi seperti sains, teknologi, perdagangan, berita bisnis, dan asosiasi profesi. Sarana kerjasama antara pribadi atau kelompok yang satu dengan pribadi atau kelompok yang lainnya tanpa mengenal batas jarak dan waktu, negara, ras, kelas ekonomi, ideologi atau faktor lainnya yang dapat menghambat pertukaran pikiran. Perkembangan teknologi informasi dan teknologi komunikasi memacu suatu cara baru dalam kehidupan, dari kehidupan dimulai sampai dengan berakhir, kehidupan seperti ini dikenal dengan e-life, artinya kehidupan ini sudah dipengaruhi oleh berbagai kebutuhan secara elektronik. Dan sekarang ini sedang semarak dengan berbagai huruf yang dimulai dengan awalan e- seperti e-commerce, e-government, e-education, e-library, e-journal, e-medicine, e-laboratory, e-biodiversitiy, dan yang lainnya lagi yang berbasis elektronika. EVOLUSI EKONOMI GLOBAL 1. Ekonomi Agraris, sampai dua ratus tahun yang lalu ekonomi dunia bersifat agraris dimana salah satu ciri utamanya adalah tanah merupakan faktor produksi yang paling dominant. 2. Ekonomi Industri , sesudah terjadi revolusi industri, dengan ditemukannya mesin uap, ekonomi global ber-evolusi ke arah ekonomi industri dengan ciri utamanya adalah modal sebagai faktor produksi yang paling penting. 3. Ekonomi Informasi, saat ini, manusia cenderung menduduki tempat sentral dalam proses produksi, karena tahap ekonomi yang sedang kita masuki ini berdasar pada pengetahuan (knowledge based) dan berfokus pada informasi (information focused). Dalam hal ini telekomunikasi dan informatika memegang peranan sebagai teknologi kunci (enabler technology). Kemajuan teknologi informasi dan telekomunikasi begitu pesat, sehingga memungkinkan diterapkannya cara-cara baru yang lebih efisien untuk produksi, distribusi dan konsumsi barang dan jasa. Proses inilah yang membawa manusia ke dalam Masyarakat atau Ekonomi Informasi. Masyarakat baru ini juga sering disebut sebagai masyarakat pasca industri. Apapun namanya, dalam era informasi, jarak fisik atau jarak geografis tidak lagi menjadi faktor dalam hubungan antar manusia atau antar lembaga usaha, sehingga jagad ini menjadi suatu dusun semesta atau “Global village”. Sehingga sering kita dengar istilah “jarak sudah mati” atau “distance is dead”, yang makin lama makin nyata kebenarannya. Dalam kehidupan kita dimasa mendatang, sektor teknologi informasi dan telekomunikasi merupakan sektor yang paling dominan. Siapa saja yang menguasai teknologi ini, maka dia akan menjadi pemimpin dalam dunianya.

BAB 2 PERKEMBANGAN, IMPLIKASI, DAN PEMANFAATAN TI DAN TK DALAM PENDIDIKAN DI INDONESIA PERKEMBANGAN TI DAN TK DI INDONESIA
• Teknologi Siaran Sejak PELITA I teknologi berupa siaran radio dan televisi telah diprogramkan. Memang sarana dan prasarana pada waktu itu belum ada atau belum memadai, namun dengan perkembangan teknologi siaran, seperti siaran langsung dari satelit dan pemancar ulang berdaya rendah, telah memungkinkan dicapainya seluruh pelosok tanah air. Teknologi ini terus berkembang sampai dengan PELITA berikutnya, yang kemudian berkembang dengan munculnya televisi swasta dan jaringan televisi siaran lokal. • Satelit Komunikasi Sejak tahun 1976, Indonesia telah memasuki era informasi modern dengan beroperasinya SKSD PALAPA I. Sistem satelit komunikasi ini merupakan kebutuhan yang unik bagi Indonesia, karena keadaan dan letak geografisnya. Dasar pertimbangan pengembangan sistem ini adalah untuk keperluan pendidikan, penerangan, hiburan, pemerintahan, bisnis, pertahanan keamanan, dan perindustrian. • Komputer Perkembangan perangkat keras komputer berlangsung sangat pesat. Selain daya muatnya yang semakin besar, kecepatan operasinya juga semakin tinggi. Jika sepuluh tahun yang lalu microprocessor komputer mampu mengakses memori dengan kecepatan perjutaan detik, maka saat ini kecepatannya sudah dihitung dengan permiiliar (nano) detik. Komputer meja atau personal computer saat ini sudah tidak dipandang sebagai barang mewah lagi, melainkan sebagai suatu kebutuhan yang esensial untuk dapat mengikuti kemajuan. Boleh dikatakan tidak ada satu kantorpun yang tidak memiliki dan mengoperasikan komputer. • Teknologi Video (Perekam Video) Perkembangan dalam teknolofi video sejalan dengan perkembangan komunikasi dan komputer, meskipun orientasi utamanya adalah untuk keperluan hiburan. PERKEMBANGAN TI DAN TK MENURUT RAMALAN PARA AHLI Dari dulu sejak sebelum maraknya penggunaan TI dan TK dalam kehidupan dan dalam bidang pendidikan pada khususnya, para ahli telah mengungkapkan ramalannya tentang penggunaan TI dan TK ini. Berikut ini kita bahas beberapa ramalan para ahli tersebut. “Globalisasi telah memicu kecenderungan pergeseran dalam dunia pendidikan dari pendidikan tatap muka yang konvensional ke arah pendidikan yang lebih terbuka” (Mukhopadhyay M., 1995). Sebagai contoh kita melihat di Perancis proyek “Flexible Learning”. Hal ini mengingatkan pada ramalan Ivan Illich awal tahun 70-an tentang “Pendidikan tanpa sekolah (Deschooling Socieiy),” yang secara ekstrimnya guru tidak lagi diperlukan. Bishop G. (1989) meramalkan bahwa pendidikan masa mendatang akan bersifat luwes (flexible), terbuka, dan dapat diakses oleh siapapun juga yang memerlukan tanpa pandang faktor jenis, usia, maupun pengalaman pendidikan sebelumnya. Mason R. (1994) berpendapat bahwa pendidikan mendatang akan lebih ditentukan oleh jaringan informasi yang memungkinkan berinteraksi dan kolaborasi, bukannya gedung sekolah. Tony Bates (1995) menyatakan bahwa teknologi dapat meningkatkan kualitas dan jangkauan bila digunakan secara bijak untuk pendidikan dan latihan, dan mempunyai arti yang sangat penting bagi kesejahteraan ekonomi. Alisjahbana I. (1966) mengemukakan bahwa pendekatan pendidikan dan pelatihan nantinya akan bersifat “Saat itu juga (Just on Time). Teknik pengajaran baru akan bersifat dua arah, kolaboratif, dan inter-disipliner. Romiszowski & Mason (1996) memprediksi penggunaan “Computer-based Multimedia Communication (CMC). Dari ramalan dan pandangan para cendikiawan di atas dapat disimpulkan bahwa dengan masuknya pengaruh globalisasi, pendidikan masa mendatang akan lebih bersifat terbuka dan dua arah, beragam, multidisipliner, serta terkait pada produktivitas kerja “saat itu juga” dan kompetitif.
PERKEMBANGAN DAN IMPLIKASI TI DAN TI DALAM PENDIDIKAN DI INDONESIA Kecenderungan perkembangan dan implikasi dunia pendidikan di Indonesia di masa mendatang adalah: 1. Berkembangnya pendidikan terbuka dengan modus belajar jarak jauh (Distance Learning). 2. Sharing resource bersama antar lembaga pendidikan / latihan dalam sebuah jaringan. 3. Penggunaan perangkat teknologi informasi interaktif, seperti CD-ROM Multimedia, dalam pendidikan secara bertahap menggantikan TV dan Video. DISTANCE LEARNING Dengan adanya perkembangan teknologi informasi dalam bidang pendidikan, maka pada saat ini sudah dimungkinkan untuk diadakan belajar jarak jauh dengan menggunakan media internet untuk menghubungkan antara mahasiswa dengan dosennya, melihat nilai mahasiswa secara online, mengecek keuangan, melihat jadwal kuliah, mengirimkan berkas tugas yang diberikan dosen dan sebagainya, semuanya itu sudah dapat dilakukan. Faktor utama dalam distance learning yang selama ini dianggap masalah adalah tidak adanya interaksi antara dosen dan mahasiswanya. Namun demikian, dengan media internet sangat dimungkinkan untuk melakukan interaksi antara dosen dan siswa baik dalam bentuk real time (waktu nyata) atau tidak. Dalam bentuk real time dapat dilakukan misalnya dalam suatu chatroom, interaksi langsung dengan real audio atau real video, dan online meeting. Yang tidak real time bisa dilakukan dengan mailing list, discussion group, newsgroup, dan buletin board. Dengan cara di atas interaksi dosen dan mahasiswa di kelas mungkin akan tergantikan walaupun tidak 100%. Bentuk-bentuk materi, ujian, kuis dan cara pendidikan lainnya dapat juga diimplementasikan ke dalam web, seperti materi dosen dibuat dalam bentuk presentasi di web dan dapat di download oleh siswa. Demikian pula dengan ujian dan kuis yang dibuat oleh dosen dapat pula dilakukan dengan cara yang sama. Penyelesaian administrasi juga dapat diselesaikan langsung dalam satu proses registrasi saja, apalagi di dukung dengan metode pembayaran online. Suatu pendidikan jarak jauh berbasis web antara lain harus memiliki unsur sebagai berikut: (1) Pusat kegiatan siswa; sebagai suatu community web based distance learning harus mampu menjadikan sarana ini sebagai tempat kegiatan mahasiswa, dimana mahasiswa dapat menambah kemampuan, membaca materi kuliah, mencari informasi dan sebagainya. (2) Interaksi dalam grup; Para mahasiswa dapat berinteraksi satu sama lain untuk mendiskusikan materi-materi yang diberikan dosen. Dosen dapat hadir dalam group ini untuk memberikan sedikit ulasan tentang materi yang diberikannya. (3) Sistem administrasi mahasiswa; dimana para mahasiswa dapat melihat informasi mengenai status mahasiswa, prestasi mahasiswa dan sebagainya. (4) Pendalaman materi dan ujian; Biasanya dosen sering mengadakan quis singkat dan tugas yang bertujuan untuk pendalaman dari apa yang telah diajarkan serta melakukan test pada akhir masa belajar. Hal ini juga harus dapat diantisipasi oleh web based distance learning (5) Perpustakaan digital; Pada bagian ini, terdapat berbagai informasi kepustakaan, tidak terbatas pada buku tapi juga pada kepustakaan digital seperti suara, gambar dan sebagainya. Bagian ini bersifat sebagai penunjang dan berbentuk database. (6) Materi online diluar materi kuliah; Untuk menunjang perkuliahan, diperlukan juga bahan bacaan dari web lainnya. Karenanya pada bagian ini, dosen dan siswa dapat langsung terlibat untuk memberikan bahan lainnya untuk di publikasikan kepada mahasiswa lainnya melalui web.
CONTOH LAIN PEMANFAATAN ATAS PERKEMBANGAN TI DAN TK UNTUK PENDIDIKAN DI INDONESIA • Perpustakaan elektronik (e-library) Revolusi teknologi informasi tidak hanya mengubah konsep pendidikan di kelas tetapi juga membuka dunia baru bagi perpustakaan. Perpustakaan yang biasanya merupakan arsip buku-buku dengan dibantu teknologi informasi dan internet dapat dengan mudah mengubah konsep perpustakaan yang pasif menjadi lebih agresif dalam berinteraksi dengan penggunanya. Dengan banyaknya perpustakaan tersambung ke internet, sumber ilmu pengetahuan yang biasanya terbatas ada di perpustakaan menjadi tidak terbatas • Surat elektronik (e-mail) Dengan aplikasi e-mail, seorang guru, orang tua, pengelola, dan siswa dapat dengan mudah saling berhubungan. Pihak sekolah dapat membuat laporan perkembangan siswa dan prestasi belajar baik diminta orang tua atau pun tidak. Dalam kegiatan belajar diluar sekolah, siswa yang menghadapai kesulitam materi pelajaran dapat bertanya lewat e-mail kepada pihak sekolah atau guru bidang studi. Demikian pula untuk guru yang berhalangan hadir dapat memberikan tugas via e-mail kepada siswa. • Ensiklopedia Sebagian perusahaan yang menjalankan ensiklopedia saat ini telah mulai bereksperimen menggunakan CD-ROM untuk menampung ensiklopedia sehingga duharapkan ensiklopedia di masa mendatang tidak hanya berisi tulisan dan gambar saja, tetapi juga video dan audio. • Jurnal atau majalah ilmiah Salah satu argumentasi umumnya di dunia pendidikan Indonesia adalah kurangny akses informasi ke jurnal atau majalah ilmiah yang berada di internet sehingga memudahkan bagi para siswa untuk mengakses informasi ilmiah terkahir yang ada di seluruh dunia. • Pengembangan homepage dan sistim distribusi bahan belajar secara elektronik (digital) Sistem pembelajaran melalui homepage dapat dikembangkan dalam bentuk sekolah maya (virtual school) sehingga semua kegiatan pembelajaran mulai dari akses bahan belajar, penilaian, dan kegiatan administrasi pendukung dapat secara online selama 24 jam. • Video teleconference Keberadaan teknologi informasi video teleconference memungkinkan bagi anak-anak di seluruh dunia untuk saling mengenal dan berhubungan satu dengan lainnya. Video teleconference di sekolah merupakan saranan untuk diskusi, simulasi dan dapat digunakan untuk bermain peran pada kegiatan belajar mengajar yang bersifat social. Disamping itu dapat pula untuk pengamatan proses eksperimen dari seorang guru.

BAB 3 KESIMPULAN
Sejak tahun 1976, Indonesia telah memasuki era indormasi modern dengan beroperasinya SKSD PALAPA I. Di era informasi ini, TI dan TK memegang peranan sebagai teknologi kunci (enabler technology). Perkembangan TI dan TK dapat meningkatkan kinerja dan memungkinkan berbagai kegiatan dapat dilaksanakan dengan cepat, tepat dan akurat, termasuk dalam dunia pendidikan. Dengan perkembangan TI dan TK yang sangat pesat ini, mau tidak mau, siap ataupun tidak siap, akan semakin deras mengalirkan informasi dengan segala dampak positif dan negatifnya ke masyarakat Indonesia. Perkembangan TI dan TK memperlihatkan bermunculannya berbagai jenis kegiatan yang berbasis pada teknologi ini, termasuk dalam dunia pendidikan. Seperti penggunaan e-learning, e-library, e-education, e-mail, e-laboratory, dan lainnya. Seperti ramalan dan pandangan para cendikiawan tentang pendidikan di masa depan bahwa dengan masuknya pengaruh globalisasi, pendidikan masa mendatang akan lebih bersifat terbuka dan dua arah, beragam, multidisipliner, serta terkait pada produktivitas kerja “saat itu juga” dan kompetitif. Dalam kehidupan kita dimasa mendatang, sektor teknologi informasi dan telekomunikasi merupakan sektor yang paling dominan. Siapa saja yang menguasai teknologi ini, maka dia akan menjadi pemimpin dalam dunianya.

biografi pasha ungu

BIOGRAFI PASHA UNGU

Sigit Purnomo Syamsuddin Said Laki-Laki Islam Donggala, 27 November 1979 Biografi : Pasha adalah vokalis band Ungu yang didirikan pada tahun 1996. Pasha bergabung dengan Ungu pada 1999.Pasha sendiri mengawali karirnya sebagai model dan telah muncul di beberapa iklan televisi, main sinetron dan bergabung dengan beberapa band sebelum bergabung dengan Ungu. Meski telah bercerai dari Okie, namun Pasha tetap memperhatikan Okie yang sedng mengandung buah hatinya. 14 Februari 2009, bertepatan dengan hari Valentine, Okie melahirkan anak ketiganya yang berjenis kelamin perempuan. Dalam soal karir bermusiknya, Pasha yang pernah digosipkan memiliki hubungan spesial dengan Aura Kasih ini digandeng oleh penyanyi cantik Rossa.

        Mereka dipasangkan untuk bernyanyi duet lagi Terlanjur Cinta ciptaan Yoyo Padi.Tidak banyak yang tahu bahwa Pasha pernah menjadi juara II lomba Adzan se Sulawesi Tengah. Cowok yang ternyata pandai mengaji ini sempat kuliah di ABA-ABI sebelum akhirnya memutuskan untuk berhenti kuliah dan memilih berkarir di musik. Sementara itu, dalam perjalanan hidup rumah tangganya, ayah dua anak ini pernah terlibat pemukulan dengan gitaris Marvell Band, Idea Fasha. Kasus keduanya dikabarkan akibat kecemburuan Pasha atas istrinya, Okie Calerista Agustina Sofyan, yang jalan dengan Idea. Meski hangat dibicarakan media, keduanya berakhir dengan perdamaian.Pada 20 November 2008, Okie menggugat cerai Pasha di Pengadilan Agama Bogor. Saat mengajukan gugatan cerai tersebut, Okie sedang mengandung. Dan pada 20 Januari 2009 akhirnya hakim mengabulkan gugatan cerai Okie terhadap Pasha melalui Pengadilan Agama Bogor Jawa Barat.Di Hari Valentine, 14 Februari 2009, Pasha dikaruniai anak ketiga, dengan jenis kelamin perempuan. Bayi perempuan ini dilahirkan oleh mantan istrinya, Okie di RS Ibu & Anak Hermina Bogor.Gosip antara Pasha dan Alyssa tak henti beredar. Menjelang akhir Juni 2009, beredar sebuah video yang memperlihatkan Pasha mencium Alyssa. Alyssa sendiri telah membantah bahwa yang ada di video tersebut adalah dirinya.Perseteruan Pasha dengan mantan istrinya, Okie seperti merembet ke hal lain. Pasha dikabarkan orang yang meminta kepada salah satu televisi swasta agar video klip Okie berjudul Satu Sampai Mati tidak ditayangkan. Hingga saat ini, belum ada konfirmasi dari pihak Pasha. Okie sendiri tidak membenarkan atau mengiyakan kabar ini.Dua hari jelang ultahnya, Pasha mendapat 'kado', yakni terkait dengan kasus dugaan kekerasan yang dilaporkan mantan istrinya, Okie Agustina. 25 November 2009, ia ditetapkan sebagai tahanan kota oleh Kejari Bogor. Pun demikian, terkait dengan pekerjaannya, jika harus ke luar kota, ia bisa mengajukan dispensasi, dan pihak Kejari akan mempertimbangkannya.Terkait dengan status tahanan kota yang disandangnya, Pasha mengajukan penangguhan dengan jaminan uang sebesar Rp500 juta. Penangguhan ini dikeluarkan PN Bogor terhitung sejak 9 Desember 2009.Terkait kasusnya, di awal Januari 2010, Pasha akhirnya meminta maaf kepada mantan istrinya Okie, di hadapan sidang, yang juga disaksikan oleh pewarta. Bahkan mereka tampak akur, dengan berjabat tangan, dan berciuman pipi.Akur tak berarti kasus Pasha vs Okie jadi mandeg, proses hukum tetap dijalankan. Dan pada 9 Februari 2010, oleh Jaksa Penuntut Umum, Pasha dituntut 1 tahun 6 bulan penjara karena terbukti secara sah dan meyakinkan melakukan penganiayaan terhadap mantan istrinya. Ditambah lagi sebelumnya, di 2008, Pasha pernah mendapat mendapatkan hukuman percobaan 8 bulan, sehingga semakin memberatkan tuntutan terhadap Pasha.

tata surya

Tata Surya[a] adalah kumpulan benda langit yang terdiri atas sebuah bintang yang disebut Matahari dan semua objek yang terikat oleh gaya gravitasinya. Objek-objek tersebut termasuk delapan buah planet yang sudah diketahui dengan orbit berbentuk elips, lima planet kerdil/katai, 173 satelit alami yang telah diidentifikasi[b], dan jutaan benda langit (meteor, asteroid, komet) lainnya.
Tata Surya terbagi menjadi Matahari, empat planet bagian dalam, sabuk asteroid, empat planet bagian luar, dan di bagian terluar adalah Sabuk Kuiper dan piringan tersebar. Awan Oort diperkirakan terletak di daerah terjauh yang berjarak sekitar seribu kali di luar bagian yang terluar.
Berdasarkan jaraknya dari Matahari, kedelapan planet Tata Surya ialah Merkurius (57,9 juta km), Venus (108 juta km), Bumi (150 juta km), Mars (228 juta km), Yupiter (779 juta km), Saturnus (1.430 juta km), Uranus (2.880 juta km), dan Neptunus (4.500 juta km). Sejak pertengahan 2008, ada lima objek angkasa yang diklasifikasikan sebagai planet kerdil. Orbit planet-planet kerdil, kecuali Ceres, berada lebih jauh dari Neptunus. Kelima planet kerdil tersebut ialah Ceres (415 juta km. di sabuk asteroid; dulunya diklasifikasikan sebagai planet kelima), Pluto (5.906 juta km.; dulunya diklasifikasikan sebagai planet kesembilan), Haumea (6.450 juta km), Makemake (6.850 juta km), dan Eris (10.100 juta km).
Enam dari kedelapan planet dan tiga dari kelima planet kerdil itu dikelilingi oleh satelit alami. Masing-masing planet bagian luar dikelilingi oleh cincin planet yang terdiri dari debu dan partikel lain.

Daftar isi

 [sembunyikan

Asal usul

Banyak hipotesis tentang asal usul Tata Surya telah dikemukakan para ahli, beberapa di antaranya adalah:
Pierre-Simon Laplace, pendukung Hipotesis Nebula
Gerard Kuiper, pendukung Hipotesis Kondensasi
Hipotesis Nebula
Hipotesis nebula pertama kali dikemukakan oleh Emanuel Swedenborg (1688-1772)[1] tahun 1734 dan disempurnakan oleh Immanuel Kant (1724-1804) pada tahun 1775. Hipotesis serupa juga dikembangkan oleh Pierre Marquis de Laplace[2] secara independen pada tahun 1796. Hipotesis ini, yang lebih dikenal dengan Hipotesis Nebula Kant-Laplace, menyebutkan bahwa pada tahap awal, Tata Surya masih berupa kabut raksasa. Kabut ini terbentuk dari debu, es, dan gas yang disebut nebula, dan unsur gas yang sebagian besar hidrogen. Gaya gravitasi yang dimilikinya menyebabkan kabut itu menyusut dan berputar dengan arah tertentu, suhu kabut memanas, dan akhirnya menjadi bintang raksasa (matahari). Matahari raksasa terus menyusut dan berputar semakin cepat, dan cincin-cincin gas dan es terlontar ke sekeliling Matahari. Akibat gaya gravitasi, gas-gas tersebut memadat seiring dengan penurunan suhunya dan membentuk planet dalam dan planet luar. Laplace berpendapat bahwa orbit berbentuk hampir melingkar dari planet-planet merupakan konsekuensi dari pembentukan mereka.[3]
Hipotesis Planetisimal
Hipotesis planetisimal pertama kali dikemukakan oleh Thomas C. Chamberlin dan Forest R. Moulton pada tahun 1900. Hipotesis planetisimal mengatakan bahwa Tata Surya kita terbentuk akibat adanya bintang lain yang lewat cukup dekat dengan Matahari, pada masa awal pembentukan Matahari. Kedekatan tersebut menyebabkan terjadinya tonjolan pada permukaan Matahari, dan bersama proses internal Matahari, menarik materi berulang kali dari Matahari. Efek gravitasi bintang mengakibatkan terbentuknya dua lengan spiral yang memanjang dari Matahari. Sementara sebagian besar materi tertarik kembali, sebagian lain akan tetap di orbit, mendingin dan memadat, dan menjadi benda-benda berukuran kecil yang mereka sebut planetisimal dan beberapa yang besar sebagai protoplanet. Objek-objek tersebut bertabrakan dari waktu ke waktu dan membentuk planet dan bulan, sementara sisa-sisa materi lainnya menjadi komet dan asteroid.
Hipotesis Pasang Surut Bintang
Hipotesis pasang surut bintang pertama kali dikemukakan oleh James Jeans pada tahun 1917. Planet dianggap terbentuk karena mendekatnya bintang lain kepada Matahari. Keadaan yang hampir bertabrakan menyebabkan tertariknya sejumlah besar materi dari Matahari dan bintang lain tersebut oleh gaya pasang surut bersama mereka, yang kemudian terkondensasi menjadi planet.[3] Namun astronom Harold Jeffreys tahun 1929 membantah bahwa tabrakan yang sedemikian itu hampir tidak mungkin terjadi.[3] Demikian pula astronom Henry Norris Russell mengemukakan keberatannya atas hipotesis tersebut.[4]
Hipotesis Kondensasi
Hipotesis kondensasi mulanya dikemukakan oleh astronom Belanda yang bernama G.P. Kuiper (1905-1973) pada tahun 1950. Hipotesis kondensasi menjelaskan bahwa Tata Surya terbentuk dari bola kabut raksasa yang berputar membentuk cakram raksasa.
Hipotesis Bintang Kembar
Hipotesis bintang kembar awalnya dikemukakan oleh Fred Hoyle (1915-2001) pada tahun 1956. Hipotesis mengemukakan bahwa dahulunya Tata Surya kita berupa dua bintang yang hampir sama ukurannya dan berdekatan yang salah satunya meledak meninggalkan serpihan-serpihan kecil. Serpihan itu terperangkap oleh gravitasi bintang yang tidak meledak dan mulai mengelilinginya.

Sejarah penemuan

Lima planet terdekat ke Matahari selain Bumi (Merkurius, Venus, Mars, Yupiter dan Saturnus) telah dikenal sejak zaman dahulu karena mereka semua bisa dilihat dengan mata telanjang. Banyak bangsa di dunia ini memiliki nama sendiri untuk masing-masing planet.
Perkembangan ilmu pengetahuan dan teknologi pengamatan pada lima abad lalu membawa manusia untuk memahami benda-benda langit terbebas dari selubung mitologi. Galileo Galilei (1564-1642) dengan teleskop refraktornya mampu menjadikan mata manusia "lebih tajam" dalam mengamati benda langit yang tidak bisa diamati melalui mata telanjang.
Karena teleskop Galileo bisa mengamati lebih tajam, ia bisa melihat berbagai perubahan bentuk penampakan Venus, seperti Venus Sabit atau Venus Purnama sebagai akibat perubahan posisi Venus terhadap Matahari. Penalaran Venus mengitari Matahari makin memperkuat teori heliosentris, yaitu bahwa Matahari adalah pusat alam semesta, bukan Bumi, yang sebelumnya digagas oleh Nicolaus Copernicus (1473-1543). Susunan heliosentris adalah Matahari dikelilingi oleh Merkurius hingga Saturnus.
Model heliosentris dalam manuskrip Copernicus.
Teleskop Galileo terus disempurnakan oleh ilmuwan lain seperti Christian Huygens (1629-1695) yang menemukan Titan, satelit Saturnus, yang berada hampir 2 kali jarak orbit Bumi-Yupiter.
Perkembangan teleskop juga diimbangi pula dengan perkembangan perhitungan gerak benda-benda langit dan hubungan satu dengan yang lain melalui Johannes Kepler (1571-1630) dengan Hukum Kepler. Dan puncaknya, Sir Isaac Newton (1642-1727) dengan hukum gravitasi. Dengan dua teori perhitungan inilah yang memungkinkan pencarian dan perhitungan benda-benda langit selanjutnya
Pada 1781, William Herschel (1738-1822) menemukan Uranus. Perhitungan cermat orbit Uranus menyimpulkan bahwa planet ini ada yang mengganggu. Neptunus ditemukan pada Agustus 1846. Penemuan Neptunus ternyata tidak cukup menjelaskan gangguan orbit Uranus. Pluto kemudian ditemukan pada 1930.
Pada saat Pluto ditemukan, ia hanya diketahui sebagai satu-satunya objek angkasa yang berada setelah Neptunus. Kemudian pada 1978, Charon, satelit yang mengelilingi Pluto ditemukan, sebelumnya sempat dikira sebagai planet yang sebenarnya karena ukurannya tidak berbeda jauh dengan Pluto.
Para astronom kemudian menemukan sekitar 1.000 objek kecil lainnya yang letaknya melampaui Neptunus (disebut objek trans-Neptunus), yang juga mengelilingi Matahari. Di sana mungkin ada sekitar 100.000 objek serupa yang dikenal sebagai Objek Sabuk Kuiper (Sabuk Kuiper adalah bagian dari objek-objek trans-Neptunus). Belasan benda langit termasuk dalam Objek Sabuk Kuiper di antaranya Quaoar (1.250 km pada Juni 2002), Huya (750 km pada Maret 2000), Sedna (1.800 km pada Maret 2004), Orcus, Vesta, Pallas, Hygiea, Varuna, dan 2003 EL61 (1.500 km pada Mei 2004).
Penemuan 2003 EL61 cukup menghebohkan karena Objek Sabuk Kuiper ini diketahui juga memiliki satelit pada Januari 2005 meskipun berukuran lebih kecil dari Pluto. Dan puncaknya adalah penemuan UB 313 (2.700 km pada Oktober 2003) yang diberi nama oleh penemunya Xena. Selain lebih besar dari Pluto, objek ini juga memiliki satelit.

Struktur

Perbanding relatif massa planet. Yupiter adalah 71% dari total dan Saturnus 21%. Merkurius dan Mars, yang total bersama hanya kurang dari 0.1% tidak nampak dalam diagram di atas.
Orbit-orbit Tata Surya dengan skala yang sesungguhnya
Illustrasi skala
Komponen utama sistem Tata Surya adalah matahari, sebuah bintang deret utama kelas G2 yang mengandung 99,86 persen massa dari sistem dan mendominasi seluruh dengan gaya gravitasinya.[5] Yupiter dan Saturnus, dua komponen terbesar yang mengedari Matahari, mencakup kira-kira 90 persen massa selebihnya.[c]
Hampir semua objek-objek besar yang mengorbit Matahari terletak pada bidang edaran bumi, yang umumnya dinamai ekliptika. Semua planet terletak sangat dekat pada ekliptika, sementara komet dan objek-objek sabuk Kuiper biasanya memiliki beda sudut yang sangat besar dibandingkan ekliptika.
Planet-planet dan objek-objek Tata Surya juga mengorbit mengelilingi Matahari berlawanan dengan arah jarum jam jika dilihat dari atas kutub utara Matahari, terkecuali Komet Halley.
Hukum Gerakan Planet Kepler menjabarkan bahwa orbit dari objek-objek Tata Surya sekeliling Matahari bergerak mengikuti bentuk elips dengan Matahari sebagai salah satu titik fokusnya. Objek yang berjarak lebih dekat dari Matahari (sumbu semi-mayor-nya lebih kecil) memiliki tahun waktu yang lebih pendek. Pada orbit elips, jarak antara objek dengan Matahari bervariasi sepanjang tahun. Jarak terdekat antara objek dengan Matahari dinamai perihelion, sedangkan jarak terjauh dari Matahari dinamai aphelion. Semua objek Tata Surya bergerak tercepat di titik perihelion dan terlambat di titik aphelion. Orbit planet-planet bisa dibilang hampir berbentuk lingkaran, sedangkan komet, asteroid dan objek sabuk Kuiper kebanyakan orbitnya berbentuk elips.
Untuk mempermudah representasi, kebanyakan diagram Tata Surya menunjukan jarak antara orbit yang sama antara satu dengan lainnya. Pada kenyataannya, dengan beberapa perkecualian, semakin jauh letak sebuah planet atau sabuk dari Matahari, semakin besar jarak antara objek itu dengan jalur edaran orbit sebelumnya. Sebagai contoh, Venus terletak sekitar sekitar 0,33 satuan astronomi (SA) lebih dari Merkurius[d], sedangkan Saturnus adalah 4,3 SA dari Yupiter, dan Neptunus terletak 10,5 SA dari Uranus. Beberapa upaya telah dicoba untuk menentukan korelasi jarak antar orbit ini (hukum Titus-Bode), tetapi sejauh ini tidak satu teori pun telah diterima.
Hampir semua planet-planet di Tata Surya juga memiliki sistem sekunder. Kebanyakan adalah benda pengorbit alami yang disebut satelit. Beberapa benda ini memiliki ukuran lebih besar dari planet. Hampir semua satelit alami yang paling besar terletak di orbit sinkron, dengan satu sisi satelit berpaling ke arah planet induknya secara permanen. Empat planet terbesar juga memliki cincin yang berisi partikel-partikel kecil yang mengorbit secara serempak.

[sunting] Terminologi

Secara informal, Tata Surya dapat dibagi menjadi tiga daerah. Tata Surya bagian dalam mencakup empat planet kebumian dan sabuk asteroid utama. Pada daerah yang lebih jauh, Tata Surya bagian luar, terdapat empat gas planet raksasa.[6] Sejak ditemukannya Sabuk Kuiper, bagian terluar Tata Surya dianggap wilayah berbeda tersendiri yang meliputi semua objek melampaui Neptunus.[7]
Secara dinamis dan fisik, objek yang mengorbit matahari dapat diklasifikasikan dalam tiga golongan: planet, planet kerdil, dan benda kecil Tata Surya. Planet adalah sebuah badan yang mengedari Matahari dan mempunyai massa cukup besar untuk membentuk bulatan diri dan telah membersihkan orbitnya dengan menginkorporasikan semua objek-objek kecil di sekitarnya. Dengan definisi ini, Tata Surya memiliki delapan planet: Merkurius, Venus, Bumi, Mars, Yupiter, Saturnus, dan Neptunus. Pluto telah dilepaskan status planetnya karena tidak dapat membersihkan orbitnya dari objek-objek Sabuk Kuiper.[8]
Planet kerdil adalah benda angkasa bukan satelit yang mengelilingi Matahari, mempunyai massa yang cukup untuk bisa membentuk bulatan diri tetapi belum dapat membersihkan daerah sekitarnya.[8] Menurut definisi ini, Tata Surya memiliki lima buah planet kerdil: Ceres, Pluto, Haumea, Makemake, dan Eris.[9] Objek lain yang mungkin akan diklasifikasikan sebagai planet kerdil adalah: Sedna, Orcus, dan Quaoar. Planet kerdil yang memiliki orbit di daerah trans-Neptunus biasanya disebut "plutoid".[10] Sisa objek-objek lain berikutnya yang mengitari Matahari adalah benda kecil Tata Surya.[8]
Ilmuwan ahli planet menggunakan istilah gas, es, dan batu untuk mendeskripsi kelas zat yang terdapat di dalam Tata Surya. Batu digunakan untuk menamai bahan bertitik lebur tinggi (lebih besar dari 500 K), sebagai contoh silikat. Bahan batuan ini sangat umum terdapat di Tata Surya bagian dalam, merupakan komponen pembentuk utama hampir semua planet kebumian dan asteroid. Gas adalah bahan-bahan bertitik lebur rendah seperti atom hidrogen, helium, dan gas mulia, bahan-bahan ini mendominasi wilayah tengah Tata Surya, yang didominasi oleh Yupiter dan Saturnus. Sedangkan es, seperti air, metana, amonia dan karbon dioksida,[11] memiliki titik lebur sekitar ratusan derajat kelvin. Bahan ini merupakan komponen utama dari sebagian besar satelit planet raksasa. Ia juga merupakan komponen utama Uranus dan Neptunus (yang sering disebut "es raksasa"), serta berbagai benda kecil yang terletak di dekat orbit Neptunus.[12]
Istilah volatiles mencakup semua bahan bertitik didih rendah (kurang dari ratusan kelvin), yang termasuk gas dan es; tergantung pada suhunya, 'volatiles' dapat ditemukan sebagai es, cairan, atau gas di berbagai bagian Tata Surya.

Zona planet

Zona Tata Surya yang meliputi, planet bagian dalam, sabuk asteroid, planet bagian luar, dan sabuk Kuiper. (Gambar tidak sesuai skala)
Di zona planet dalam, Matahari adalah pusat Tata Surya dan letaknya paling dekat dengan planet Merkurius (jarak dari Matahari 57,9 × 106 km, atau 0,39 SA), Venus (108,2 × 106 km, 0,72 SA), Bumi (149,6 × 106 km, 1 SA) dan Mars (227,9 × 106 km, 1,52 SA). Ukuran diameternya antara 4.878 km dan 12.756 km, dengan massa jenis antara 3,95 g/cm3 dan 5,52 g/cm3.
Antara Mars dan Yupiter terdapat daerah yang disebut sabuk asteroid, kumpulan batuan metal dan mineral. Kebanyakan asteroid-asteroid ini hanya berdiameter beberapa kilometer (lihat: Daftar asteroid), dan beberapa memiliki diameter 100 km atau lebih. Ceres, bagian dari kumpulan asteroid ini, berukuran sekitar 960 km dan dikategorikan sebagai planet kerdil. Orbit asteroid-asteroid ini sangat eliptis, bahkan beberapa menyimpangi Merkurius (Icarus) dan Uranus (Chiron).
Pada zona planet luar, terdapat planet gas raksasa Yupiter (778,3 × 106 km, 5,2 SA), Uranus (2,875 × 109 km, 19,2 SA) dan Neptunus (4,504 × 109 km, 30,1 SA) dengan massa jenis antara 0,7 g/cm3 dan 1,66 g/cm3.
Jarak rata-rata antara planet-planet dengan Matahari bisa diperkirakan dengan menggunakan baris matematis Titus-Bode. Regularitas jarak antara jalur edaran orbit-orbit ini kemungkinan merupakan efek resonansi sisa dari awal terbentuknya Tata Surya. Anehnya, planet Neptunus tidak muncul di baris matematis Titus-Bode, yang membuat para pengamat berspekulasi bahwa Neptunus merupakan hasil tabrakan kosmis.

 Matahari

Matahari dilihat dari spektrum sinar-X
Matahari adalah bintang induk Tata Surya dan merupakan komponen utama sistem Tata Surya ini. Bintang ini berukuran 332.830 massa bumi. Massa yang besar ini menyebabkan kepadatan inti yang cukup besar untuk bisa mendukung kesinambungan fusi nuklir dan menyemburkan sejumlah energi yang dahsyat. Kebanyakan energi ini dipancarkan ke luar angkasa dalam bentuk radiasi eletromagnetik, termasuk spektrum optik.
Matahari dikategorikan ke dalam bintang kerdil kuning (tipe G V) yang berukuran tengahan, tetapi nama ini bisa menyebabkan kesalahpahaman, karena dibandingkan dengan bintang-bintang yang ada di dalam galaksi Bima Sakti, Matahari termasuk cukup besar dan cemerlang. Bintang diklasifikasikan dengan diagram Hertzsprung-Russell, yaitu sebuah grafik yang menggambarkan hubungan nilai luminositas sebuah bintang terhadap suhu permukaannya. Secara umum, bintang yang lebih panas akan lebih cemerlang. Bintang-bintang yang mengikuti pola ini dikatakan terletak pada deret utama, dan Matahari letaknya persis di tengah deret ini. Akan tetapi, bintang-bintang yang lebih cemerlang dan lebih panas dari Matahari adalah langka, sedangkan bintang-bintang yang lebih redup dan dingin adalah umum.[13]
Dipercayai bahwa posisi Matahari pada deret utama secara umum merupakan "puncak hidup" dari sebuah bintang, karena belum habisnya hidrogen yang tersimpan untuk fusi nuklir. Saat ini Matahari tumbuh semakin cemerlang. Pada awal kehidupannya, tingkat kecemerlangannya adalah sekitar 70 persen dari kecermelangan sekarang.[14]
Matahari secara metalisitas dikategorikan sebagai bintang "populasi I". Bintang kategori ini terbentuk lebih akhir pada tingkat evolusi alam semesta, sehingga mengandung lebih banyak unsur yang lebih berat daripada hidrogen dan helium ("metal" dalam sebutan astronomi) dibandingkan dengan bintang "populasi II".[15] Unsur-unsur yang lebih berat daripada hidrogen dan helium terbentuk di dalam inti bintang purba yang kemudian meledak. Bintang-bintang generasi pertama perlu punah terlebih dahulu sebelum alam semesta dapat dipenuhi oleh unsur-unsur yang lebih berat ini.
Bintang-bintang tertua mengandung sangat sedikit metal, sedangkan bintang baru mempunyai kandungan metal yang lebih tinggi. Tingkat metalitas yang tinggi ini diperkirakan mempunyai pengaruh penting pada pembentukan sistem Tata Surya, karena terbentuknya planet adalah hasil penggumpalan metal.[16]

[sunting] Medium antarplanet

Lembar aliran heliosfer, karena gerak rotasi magnetis Matahari terhadap medium antarplanet.
Di samping cahaya, matahari juga secara berkesinambungan memancarkan semburan partikel bermuatan (plasma) yang dikenal sebagai angin surya. Semburan partikel ini menyebar keluar kira-kira pada kecepatan 1,5 juta kilometer per jam,[17] menciptakan atmosfer tipis (heliosfer) yang merambah Tata Surya paling tidak sejauh 100 SA (lihat juga heliopause). Kesemuanya ini disebut medium antarplanet.
Badai geomagnetis pada permukaan Matahari, seperti semburan Matahari (solar flares) dan lontaran massa korona (coronal mass ejection) menyebabkan gangguan pada heliosfer, menciptakan cuaca ruang angkasa.[18] Struktur terbesar dari heliosfer dinamai lembar aliran heliosfer (heliospheric current sheet), sebuah spiral yang terjadi karena gerak rotasi magnetis Matahari terhadap medium antarplanet.[19][20] Medan magnet bumi mencegah atmosfer bumi berinteraksi dengan angin surya. Venus dan Mars yang tidak memiliki medan magnet, atmosfernya habis terkikis ke luar angkasa.[21] Interaksi antara angin surya dan medan magnet bumi menyebabkan terjadinya aurora, yang dapat dilihat dekat kutub magnetik bumi.
Heliosfer juga berperan melindungi Tata Surya dari sinar kosmik yang berasal dari luar Tata Surya. Medan magnet planet-planet menambah peran perlindungan selanjutnya. Densitas sinar kosmik pada medium antarbintang dan kekuatan medan magnet Matahari mengalami perubahan pada skala waktu yang sangat panjang, sehingga derajat radiasi kosmis di dalam Tata Surya sendiri adalah bervariasi, meski tidak diketahui seberapa besar.[22]
Medium antarplanet juga merupakan tempat beradanya paling tidak dua daerah mirip piringan yang berisi debu kosmis. Yang pertama, awan debu zodiak, terletak di Tata Surya bagian dalam dan merupakan penyebab cahaya zodiak. Ini kemungkinan terbentuk dari tabrakan dalam sabuk asteroid yang disebabkan oleh interaksi dengan planet-planet.[23] Daerah kedua membentang antara 10 SA sampai sekitar 40 SA, dan mungkin disebabkan oleh tabrakan yang mirip tetapi tejadi di dalam Sabuk Kuiper.[24][25]

Tata Surya bagian dalam

Tata Surya bagian dalam adalah nama umum yang mencakup planet kebumian dan asteroid. Terutama terbuat dari silikat dan logam, objek dari Tata Surya bagian dalam melingkup dekat dengan matahari, radius dari seluruh daerah ini lebih pendek dari jarak antara Yupiter dan Saturnus.

[sunting] Planet-planet bagian dalam

Planet-planet bagian dalam. Dari kiri ke kanan: Merkurius, Venus, Bumi, dan Mars (ukuran menurut skala)
Empat planet bagian dalam atau planet kebumian (terrestrial planet) memiliki komposisi batuan yang padat, hampir tidak mempunyai atau tidak mempunyai satelit dan tidak mempunyai sistem cincin. Komposisi Planet-planet ini terutama adalah mineral bertitik leleh tinggi, seperti silikat yang membentuk kerak dan selubung, dan logam seperti besi dan nikel yang membentuk intinya. Tiga dari empat planet ini (Venus, Bumi dan Mars) memiliki atmosfer, semuanya memiliki kawah meteor dan sifat-sifat permukaan tektonis seperti gunung berapi dan lembah pecahan. Planet yang letaknya di antara Matahari dan bumi (Merkurius dan Venus) disebut juga planet inferior.
[sunting] Merkurius
Merkurius (0,4 SA dari Matahari) adalah planet terdekat dari Matahari serta juga terkecil (0,055 massa bumi). Merkurius tidak memiliki satelit alami dan ciri geologisnya di samping kawah meteorid yang diketahui adalah lobed ridges atau rupes, kemungkinan terjadi karena pengerutan pada perioda awal sejarahnya.[26] Atmosfer Merkurius yang hampir bisa diabaikan terdiri dari atom-atom yang terlepas dari permukaannya karena semburan angin surya.[27] Besarnya inti besi dan tipisnya kerak Merkurius masih belum bisa dapat diterangkan. Menurut dugaan hipotesa lapisan luar planet ini terlepas setelah terjadi tabrakan raksasa, dan perkembangan ("akresi") penuhnya terhambat oleh energi awal Matahari.[28][29]
[sunting] Venus
Venus (0,7 SA dari Matahari) berukuran mirip bumi (0,815 massa bumi). Dan seperti bumi, planet ini memiliki selimut kulit silikat yang tebal dan berinti besi, atmosfernya juga tebal dan memiliki aktivitas geologi. Akan tetapi planet ini lebih kering dari bumi dan atmosfernya sembilan kali lebih padat dari bumi. Venus tidak memiliki satelit. Venus adalah planet terpanas dengan suhu permukaan mencapai 400 °C, kemungkinan besar disebabkan jumlah gas rumah kaca yang terkandung di dalam atmosfer.[30] Sejauh ini aktivitas geologis Venus belum dideteksi, tetapi karena planet ini tidak memiliki medan magnet yang bisa mencegah habisnya atmosfer, diduga sumber atmosfer Venus berasal dari gunung berapi.[31]
[sunting] Bumi
Bumi (1 SA dari Matahari) adalah planet bagian dalam yang terbesar dan terpadat, satu-satunya yang diketahui memiliki aktivitas geologi dan satu-satunya planet yang diketahui memiliki mahluk hidup. Hidrosfer-nya yang cair adalah khas di antara planet-planet kebumian dan juga merupakan satu-satunya planet yang diamati memiliki lempeng tektonik. Atmosfer bumi sangat berbeda dibandingkan planet-planet lainnya, karena dipengaruhi oleh keberadaan mahluk hidup yang menghasilkan 21% oksigen.[32] Bumi memiliki satu satelit, bulan, satu-satunya satelit besar dari planet kebumian di dalam Tata Surya.
Mars
Mars (1,5 SA dari Matahari) berukuran lebih kecil dari bumi dan Venus (0,107 massa bumi). Planet ini memiliki atmosfer tipis yang kandungan utamanya adalah karbon dioksida. Permukaan Mars yang dipenuhi gunung berapi raksasa seperti Olympus Mons dan lembah retakan seperti Valles marineris, menunjukan aktivitas geologis yang terus terjadi sampai baru belakangan ini. Warna merahnya berasal dari warna karat tanahnya yang kaya besi.[33] Mars mempunyai dua satelit alami kecil (Deimos dan Phobos) yang diduga merupakan asteroid yang terjebak gravitasi Mars.[34]

Sabuk asteroid

Sabuk asteroid utama dan asteroid Troya
Asteroid secara umum adalah objek Tata Surya yang terdiri dari batuan dan mineral logam beku.[35]
Sabuk asteroid utama terletak di antara orbit Mars dan Yupiter, berjarak antara 2,3 dan 3,3 SA dari matahari, diduga merupakan sisa dari bahan formasi Tata Surya yang gagal menggumpal karena pengaruh gravitasi Yupiter.[36]
Gradasi ukuran asteroid adalah ratusan kilometer sampai mikroskopis. Semua asteroid, kecuali Ceres yang terbesar, diklasifikasikan sebagai benda kecil Tata Surya. Beberapa asteroid seperti Vesta dan Hygiea mungkin akan diklasifikasi sebagai planet kerdil jika terbukti telah mencapai kesetimbangan hidrostatik.[37]
Sabuk asteroid terdiri dari beribu-ribu, mungkin jutaan objek yang berdiameter satu kilometer.[38] Meskipun demikian, massa total dari sabuk utama ini tidaklah lebih dari seperseribu massa bumi.[39] Sabuk utama tidaklah rapat, kapal ruang angkasa secara rutin menerobos daerah ini tanpa mengalami kecelakaan. Asteroid yang berdiameter antara 10 dan 10−4 m disebut meteorid.[40]
[sunting] Ceres
Ceres
Ceres (2,77 SA) adalah benda terbesar di sabuk asteroid dan diklasifikasikan sebagai planet kerdil. Diameternya adalah sedikit kurang dari 1000 km, cukup besar untuk memiliki gravitasi sendiri untuk menggumpal membentuk bundaran. Ceres dianggap sebagai planet ketika ditemukan pada abad ke 19, tetapi di-reklasifikasi menjadi asteroid pada tahun 1850an setelah observasi lebih lanjut menemukan beberapa asteroid lagi.[41] Ceres direklasifikasi lanjut pada tahun 2006 sebagai planet kerdil.
Kelompok asteroid
Asteroid pada sabuk utama dibagi menjadi kelompok dan keluarga asteroid bedasarkan sifat-sifat orbitnya. satelit asteroid adalah asteroid yang mengedari asteroid yang lebih besar. Mereka tidak mudah dibedakan dari satelit-satelit planet, kadang kala hampir sebesar pasangannya. Sabuk asteroid juga memiliki komet sabuk utama yang mungkin merupakan sumber air bumi.[42]
Asteroid-asteroid Trojan terletak di titik L4 atau L5 Yupiter (daerah gravitasi stabil yang berada di depan dan belakang sebuah orbit planet), sebutan "trojan" sering digunakan untuk objek-objek kecil pada Titik Langrange dari sebuah planet atau satelit. Kelompok Asteroid Hilda terletak di orbit resonansi 2:3 dari Yupiter, yang artinya kelompok ini mengedari Matahari tiga kali untuk setiak dua edaran Yupiter.
Bagian dalam Tata Surya juga dipenuhi oleh asteroid liar, yang banyak memotong orbit-orbit planet planet bagian dalam.Tata Surya bagian luar
Pada bagian luar dari Tata Surya terdapat gas-gas raksasa dengan satelit-satelitnya yang berukuran planet. Banyak komet berperioda pendek termasuk beberapa Centaur, juga berorbit di daerah ini. Badan-badan padat di daerah ini mengandung jumlah volatil (contoh: air, amonia, metan, yang sering disebut "es" dalam peristilahan ilmu keplanetan) yang lebih tinggi dibandingkan planet batuan di bagian dalam Tata Surya.

Planet-planet luar

Raksasa-raksasa gas dalam Tata Surya dan Matahari, berdasarkan skala
Keempat planet luar, yang disebut juga planet raksasa gas (gas giant), atau planet jovian, secara keseluruhan mencakup 99 persen massa yang mengorbit Matahari. Yupiter dan Saturnus sebagian besar mengandung hidrogen dan helium; Uranus dan Neptunus memiliki proporsi es yang lebih besar. Para astronom mengusulkan bahwa keduanya dikategorikan sendiri sebagai raksasa es.[43] Keempat raksasa gas ini semuanya memiliki cincin, meski hanya sistem cincin Saturnus yang dapat dilihat dengan mudah dari bumi.
Yupiter
Yupiter (5,2 SA), dengan 318 kali massa bumi, adalah 2,5 kali massa dari gabungan seluruh planet lainnya. Kandungan utamanya adalah hidrogen dan helium. Sumber panas di dalam Yupiter menyebabkan timbulnya beberapa ciri semi-permanen pada atmosfernya, sebagai contoh pita pita awan dan Bintik Merah Raksasa. Sejauh yang diketahui Yupiter memiliki 63 satelit. Empat yang terbesar, Ganymede, Callisto, Io, dan Europa menampakan kemiripan dengan planet kebumian, seperti gunung berapi dan inti yang panas.[44] Ganymede, yang merupakan satelit terbesar di Tata Surya, berukuran lebih besar dari Merkurius.
Saturnus
Saturnus (9,5 SA) yang dikenal dengan sistem cincinnya, memiliki beberapa kesamaan dengan Yupiter, sebagai contoh komposisi atmosfernya. Meskipun Saturnus hanya sebesar 60% volume Yupiter, planet ini hanya seberat kurang dari sepertiga Yupiter atau 95 kali massa bumi, membuat planet ini sebuah planet yang paling tidak padat di Tata Surya. Saturnus memiliki 60 satelit yang diketahui sejauh ini (dan 3 yang belum dipastikan) dua di antaranya Titan dan Enceladus, menunjukan activitas geologis, meski hampir terdiri hanya dari es saja.[45] Titan berukuran lebih besar dari Merkurius dan merupakan satu-satunya satelit di Tata Surya yang memiliki atmosfer yang cukup berarti.
Uranus
Uranus (19,6 SA) yang memiliki 14 kali massa bumi, adalah planet yang paling ringan di antara planet-planet luar. Planet ini memiliki kelainan ciri orbit. Uranus mengedari Matahari dengan bujkuran poros 90 derajad pada ekliptika. Planet ini memiliki inti yang sangat dingin dibandingkan gas raksasa lainnya dan hanya sedikit memancarkan energi panas.[46] Uranus memiliki 27 satelit yang diketahui, yang terbesar adalah Titania, Oberon, Umbriel, Ariel dan Miranda.
Neptunus
Neptunus (30 SA) meskipun sedikit lebih kecil dari Uranus, memiliki 17 kali massa bumi, sehingga membuatnya lebih padat. Planet ini memancarkan panas dari dalam tetapi tidak sebanyak Yupiter atau Saturnus.[47] Neptunus memiliki 13 satelit yang diketahui. Yang terbesar, Triton, geologinya aktif, dan memiliki geyser nitrogen cair.[48] Triton adalah satu-satunya satelit besar yang orbitnya terbalik arah (retrogade). Neptunus juga didampingi beberapa planet minor pada orbitnya, yang disebut Trojan Neptunus. Benda-benda ini memiliki resonansi 1:1 dengan Neptunus. Komet
Komet Hale-Bopp
Komet adalah badan Tata Surya kecil, biasanya hanya berukuran beberapa kilometer, dan terbuat dari es volatil. Badan-badan ini memiliki eksentrisitas orbit tinggi, secara umum perihelion-nya terletak di planet-planet bagian dalam dan letak aphelion-nya lebih jauh dari Pluto. Saat sebuah komet memasuki Tata Surya bagian dalam, dekatnya jarak dari Matahari menyebabkan permukaan esnya bersumblimasi dan berionisasi, yang menghasilkan koma, ekor gas dan debu panjang, yang sering dapat dilihat dengan mata telanjang.
Komet berperioda pendek memiliki kelangsungan orbit kurang dari dua ratus tahun. Sedangkan komet berperioda panjang memiliki orbit yang berlangsung ribuan tahun. Komet berperioda pendek dipercaya berasal dari Sabuk Kuiper, sedangkan komet berperioda panjang, seperti Hale-bopp, berasal dari Awan Oort. Banyak kelompok komet, seperti Kreutz Sungrazers, terbentuk dari pecahan sebuah induk tunggal.[49] Sebagian komet berorbit hiperbolik mungking berasal dari luar Tata Surya, tetapi menentukan jalur orbitnya secara pasti sangatlah sulit.[50] Komet tua yang bahan volatilesnya telah habis karena panas Matahari sering dikategorikan sebagai asteroid. Centaur
Centaur adalah benda-benda es mirip komet yang poros semi-majornya lebih besar dari Yupiter (5,5 SA) dan lebih kecil dari Neptunus (30 SA). Centaur terbesar yang diketahui adalah, 10199 Chariklo, berdiameter 250 km.[52] Centaur temuan pertama, 2060 Chiron, juga diklasifikasikan sebagai komet (95P) karena memiliki koma sama seperti komet kalau mendekati Matahari.[53] Beberapa astronom mengklasifikasikan Centaurs sebagai objek sabuk Kuiper sebaran-ke-dalam (inward-scattered Kuiper belt objects), seiring dengan sebaran keluar yang bertempat di piringan tersebar (outward-scattered residents of the scattered disc).[54]

Daerah trans-Neptunus

Plot seluruh objek sabuk Kuiper
Diagram yang menunjukkan pembagian sabuk Kuiper
Daerah yang terletak jauh melampaui Neptunus, atau daerah trans-Neptunus, sebagian besar belum dieksplorasi. Menurut dugaan daerah ini sebagian besar terdiri dari dunia-dunia kecil (yang terbesar memiliki diameter seperlima bumi dan bermassa jauh lebih kecil dari bulan) dan terutama mengandung batu dan es. Daerah ini juga dikenal sebagai daerah luar Tata Surya, meskipun berbagai orang menggunakan istilah ini untuk daerah yang terletak melebihi sabuk asteroid.

 Sabuk Kuiper

Sabuk Kuiper adalah sebuah cincin raksasa mirip dengan sabuk asteroid, tetapi komposisi utamanya adalah es. Sabuk ini terletak antara 30 dan 50 SA, dan terdiri dari benda kecil Tata Surya. Meski demikian, beberapa objek Kuiper yang terbesar, seperti Quaoar, Varuna, dan Orcus, mungkin akan diklasifikasikan sebagai planet kerdil. Para ilmuwan memperkirakan terdapat sekitar 100.000 objek Sabuk Kuiper yang berdiameter lebih dari 50 km, tetapi diperkirakan massa total Sabuk Kuiper hanya sepersepuluh massa bumi.[55] Banyak objek Kuiper memiliki satelit ganda dan kebanyakan memiliki orbit di luar bidang eliptika.
Sabuk Kuiper secara kasar bisa dibagi menjadi "sabuk klasik" dan resonansi. Resonansi adalah orbit yang terkait pada Neptunus (contoh: dua orbit untuk setiap tiga orbit Neptunus atau satu untuk setiap dua). Resonansi yang pertama bermula pada Neptunus sendiri. Sabuk klasik terdiri dari objek yang tidak memiliki resonansi dengan Neptunus, dan terletak sekitar 39,4 SA sampai 47,7 SA.[56] Anggota dari sabuk klasik diklasifikasikan sebagai cubewanos, setelah anggota jenis pertamanya ditemukan (15760) 1992QB1 [57]
Pluto dan Charon
Pluto dan ketiga satelitnya
Pluto (rata-rata 39 SA), sebuah planet kerdil, adalah objek terbesar sejauh ini di Sabuk Kuiper. Ketika ditemukan pada tahun 1930, benda ini dianggap sebagai planet yang kesembilan, definisi ini diganti pada tahun 2006 dengan diangkatnya definisi formal planet. Pluto memiliki kemiringan orbit cukup eksentrik (17 derajat dari bidang ekliptika) dan berjarak 29,7 SA dari Matahari pada titik prihelion (sejarak orbit Neptunus) sampai 49,5 SA pada titik aphelion.
Tidak jelas apakah Charon, satelit Pluto yang terbesar, akan terus diklasifikasikan sebagai satelit atau menjadi sebuah planet kerdil juga. Pluto dan Charon, keduanya mengedari titik barycenter gravitasi di atas permukaannya, yang membuat Pluto-Charon sebuah sistem ganda. Dua satelit yang jauh lebih kecil Nix dan Hydra juga mengedari Pluto dan Charon. Pluto terletak pada sabuk resonan dan memiliki 3:2 resonansi dengan Neptunus, yang berarti Pluto mengedari Matahari dua kali untuk setiap tiga edaran Neptunus. Objek sabuk Kuiper yang orbitnya memiliki resonansi yang sama disebut plutino.[58]
 Haumea dan Makemake
Haumea (rata-rata 43,34 SA) dan Makemake (rata-rata 45,79 SA) adalah dua objek terbesar sejauh ini di dalam sabuk Kuiper klasik. Haumea adalah sebuah objek berbentuk telur dan memiliki dua satelit. Makemake adalah objek paling cemerlang di sabuk Kuiper setelah Pluto. Pada awalnya dinamai 2003 EL61 dan 2005 FY9, pada tahun 2008 diberi nama dan status sebagai planet kerdil. Orbit keduanya berinklinasi jauh lebih membujur dari Pluto (28° dan 29°) [59] dan lain seperti Pluto, keduanya tidak dipengaruhi oleh Neptunus, sebagai bagian dari kelompok Objek Sabuk Kuiper klasik

Piringan tersebar
Hitam: tersebar; biru: klasik; hijau: resonan
Eris dan satelitnya Dysnomia
Piringan tersebar (scattered disc) berpotongan dengan sabuk Kuiper dan menyebar keluar jauh lebih luas. Daerah ini diduga merupakan sumber komet berperioda pendek. Objek piringan tersebar diduga terlempar ke orbit yang tidak menentu karena pengaruh gravitasi dari gerakan migrasi awal Neptunus. Kebanyakan objek piringan tersebar (scattered disc objects, atau SDO) memiliki perihelion di dalam sabuk Kuiper dan apehelion hampir sejauh 150 SA dari Matahari. Orbit OPT juga memiliki inklinasi tinggi pada bidang ekliptika dan sering hampir bersudut siku-siku. Beberapa astronom menggolongkan piringan tersebar hanya sebagai bagian dari sabuk Kuiper dan menjuluki piringan tersebar sebagai "objek sabuk Kuiper tersebar" (scattered Kuiper belt objects).[60]
 Eris
Eris (rata-rata 68 SA) adalah objek piringan tersebar terbesar sejauh ini dan menyebabkan mulainya debat tentang definisi planet, karena Eris hanya 5%lebih besar dari Pluto dan memiliki perkiraan diameter sekitar 2.400 km. Eris adalah planet kerdil terbesar yang diketahui dan memiliki satu satelit, Dysnomia.[61] Seperti Pluto, orbitnya memiliki eksentrisitas tinggi, dengan titik perihelion 38,2 SA (mirip jarak Pluto ke Matahari) dan titik aphelion 97,6 SA dengan bidang ekliptika sangat membujur.

Daerah terjauh

Titik tempat Tata Surya berakhir dan ruang antar bintang mulai tidaklah persis terdefinisi. Batasan-batasan luar ini terbentuk dari dua gaya tekan yang terpisah: angin surya dan gravitasi Matahari. Batasan terjauh pengaruh angin surya kira kira berjarak empat kali jarak Pluto dan Matahari. Heliopause ini disebut sebagai titik permulaan medium antar bintang. Akan tetapi Bola Roche Matahari, jarak efektif pengaruh gravitasi Matahari, diperkirakan mencakup sekitar seribu kali lebih jauh
Heliopause
Heliopause dibagi menjadi dua bagian terpisah. Awan angin yang bergerak pada kecepatan 400 km/detik sampai menabrak plasma dari medium ruang antarbintang. Tabrakan ini terjadi pada benturan terminasi yang kira kira terletak di 80-100 SA dari Matahari pada daerah lawan angin dan sekitar 200 SA dari Matahari pada daerah searah jurusan angin. Kemudian angin melambat dramatis, memampat dan berubah menjadi kencang, membentuk struktur oval yang dikenal sebagai heliosheath, dengan kelakuan mirip seperti ekor komet, mengulur keluar sejauh 40 SA di bagian arah lawan angin dan berkali-kali lipat lebih jauh pada sebelah lainnya. Voyager 1 dan Voyager 2 dilaporkan telah menembus benturan terminasi ini dan memasuki heliosheath, pada jarak 94 dan 84 SA dari Matahari. Batasan luar dari heliosfer, heliopause, adalah titik tempat angin surya berhenti dan ruang antar bintang bermula.
Bentuk dari ujung luar heliosfer kemungkinan dipengaruhi dari dinamika fluida dari interaksi medium antar bintang dan juga medan magnet Matahari yang mengarah di sebelah selatan (sehingga memberi bentuk tumpul pada hemisfer utara dengan jarak 9 SA, dan lebih jauh daripada hemisfer selatan. Selebih dari heliopause, pada jarak sekitar 230 SA, terdapat benturan busur, jaluran ombak plasma yang ditinggalkan Matahari seiring edarannya berkeliling di Bima Sakti.
Sejauh ini belum ada kapal luar angkasa yang melewati heliopause, sehingga tidaklah mungkin mengetahui kondisi ruang antar bintang lokal dengan pasti. Diharapkan satelit NASA voyager akan menembus heliopause pada sekitar dekade yang akan datang dan mengirim kembali data tingkat radiasi dan angin surya. Dalam pada itu, sebuah tim yang dibiayai NASA telah mengembangkan konsep "Vision Mission" yang akan khusus mengirimkan satelit penjajak ke Awan Oort
Gambaran seorang artis tentang Awan Oort
Secara hipotesa, Awan Oort adalah sebuah massa berukuran raksasa yang terdiri dari bertrilyun-trilyun objek es, dipercaya merupakan sumber komet berperioda panjang. Awan ini menyelubungi matahari pada jarak sekitar 50.000 SA (sekitar 1 tahun cahaya) sampai sejauh 100.000 SA (1,87 tahun cahaya). Daerah ini dipercaya mengandung komet yang terlempar dari bagian dalam Tata Surya karena interaksi dengan planet-planet bagian luar. Objek Awan Oort bergerak sangat lambat dan bisa digoncangkan oleh situasi-situasi langka seperti tabrakan, effek gravitasi dari laluan bintang, atau gaya pasang galaksi, gaya pasang yang didorong Bima Sakti.[62][63]

Sedna

Foto teleskop Sedna
90377 Sedna (rata-rata 525,86 SA) adalah sebuah benda kemerahan mirip Pluto dengan orbit raksasa yang sangat eliptis, sekitar 76 SA pada perihelion dan 928 SA pada aphelion dan berjangka orbit 12.050 tahun. Mike Brown, penemu objek ini pada tahun 2003, menegaskan bahwa Sedna tidak merupakan bagian dari piringan tersebar ataupun sabuk Kuiper karena perihelionnya terlalu jauh dari pengaruh migrasi Neptunus. Dia dan beberapa astronom lainnya berpendapat bahwa Sedna adalah objek pertama dari sebuah kelompok baru, yang mungkin juga mencakup 2000 CR105. Sebuah benda bertitik perihelion pada 45 SA, aphelion pada 415 SA, dan berjangka orbit 3.420 tahun. Brown menjuluki kelompok ini "Awan Oort bagian dalam", karena mungkin terbentuk melalui proses yang mirip, meski jauh lebih dekat ke Matahari. Kemungkinan besar Sedna adalah sebuah planet kerdil, meski bentuk kebulatannya masih harus ditentukan dengan pasti.

 
Batasan-batasan
Banyak hal dari Tata Surya kita yang masih belum diketahui. Medan gravitasi Matahari diperkirakan mendominasi gaya gravitasi bintang-bintang sekeliling sejauh dua tahun cahaya (125.000 SA). Perkiraan bawah radius Awan Oort, di sisi lain, tidak lebih besar dari 50.000 SA.[64] Sekalipun Sedna telah ditemukan, daerah antara Sabuk Kuiper dan Awan Oort, sebuah daerah yang memiliki radius puluhan ribu SA, bisa dikatakan belum dipetakan. Selain itu, juga ada studi yang sedang berjalan, yang mempelajari daerah antara Merkurius dan matahari.[65] Objek-objek baru mungkin masih akan ditemukan di daerah yang belum dipetakan.

Dimensi

Perbandingan beberapa ukuran penting planet-planet:
Karakteristik Merkurius Venus Bumi Mars Yupiter Saturnus Uranus Neptunus
Jarak orbit (juta km) (SA) 57,91 (0,39) 108,21 (0,72) 149,60 (1,00) 227,94 (1,52) 778,41 (5,20) 1.426,72 (9,54) 2.870,97 (19,19) 4.498,25 (30,07)
Waktu edaran (tahun) 0,24 (88 hari) 0,62 (224 hari) 1,00 1,88 11,86 29,45 84,02 164,79
Jangka rotasi 58,65 hari 243,02 hari 23 jam 56 menit 24 jam 37 menit 9 jam 55 menit 10 jam 47 menit 17 jam 14 menit 16 jam 7 menit
Eksentrisitas edaran 0,206 0,007 0,017 0,093 0,048 0,054 0,047 0,009
Sudut inklinasi orbit (°) 7,00 3,39 0,00 1,85 1,31 2,48 0,77 1,77
Sudut inklinasi ekuator terhadap orbit (°) 0,00 177,36 23,45 25,19 3,12 26,73 97,86 29,58
Diameter ekuator (km) 4.879 12.104 12.756 6.805 142.984 120.536 51.118 49.528
Massa (dibanding Bumi) 0,06 0,81 1,00 0,15 317,8 95,2 14,5 17,1
Kepadatan menengah (g/cm³) 5,43 5,24 5,52 3,93 1,33 0,69 1,27 1,64
Suhu permukaan
min.
menengah
maks.

-173 °C
+167 °C
+427 °C

+437 °C
+464 °C
+497 °C

-89 °C
+15 °C
+58 °C

-133 °C
-55 °C
+27 °C


-108 °C


-139 °C


-197 °C


-201 °C

Konteks galaksi

Lokasi Tata Surya di dalam galaksi Bima Sakti
Lukisan artis dari Gelembung Lokal
Tata Surya terletak di galaksi Bima Sakti, sebuah galaksi spiral yang berdiameter sekitar 100.000 tahun cahaya dan memiliki sekitar 200 milyar bintang.[66] Matahari berlokasi di salah satu lengan spiral galaksi yang disebut Lengan Orion.[67] Letak Matahari berjarak antara 25.000 dan 28.000 tahun cahaya dari pusat galaksi, dengan kecepatan orbit mengelilingi pusat galaksi sekitar 2.200 kilometer per detik.
Setiap revolusinya berjangka 225-250 juta tahun. Waktu revolusi ini dikenal sebagai tahun galaksi Tata Surya.[68] Apex Matahari, arah jalur Matahari di ruang semesta, dekat letaknya dengan rasi bintang Herkules terarah pada posisi akhir bintang Vega.[69]
Lokasi Tata Surya di dalam galaksi berperan penting dalam evolusi kehidupan di Bumi. Bentuk orbit bumi adalah mirip lingkaran dengan kecepatan hampir sama dengan lengan spiral galaksi, karenanya bumi sangat jarang menerobos jalur lengan. Lengan spiral galaksi memiliki konsentrasi supernova tinggi yang berpotensi bahaya sangat besar terhadap kehidupan di Bumi. Situasi ini memberi Bumi jangka stabilitas yang panjang yang memungkinkan evolusi kehidupan.[70]
Tata Surya terletak jauh dari daerah padat bintang di pusat galaksi. Di daerah pusat, tarikan gravitasi bintang-bintang yang berdekatan bisa menggoyang benda-benda di Awan Oort dan menembakan komet-komet ke bagian dalam Tata Surya. Ini bisa menghasilkan potensi tabrakan yang merusak kehidupan di Bumi.
Intensitas radiasi dari pusat galaksi juga memengaruhi perkembangan bentuk hidup tingkat tinggi. Walaupun demikian, para ilmuwan berhipotesa bahwa pada lokasi Tata Surya sekarang ini supernova telah memengaruhi kehidupan di Bumi pada 35.000 tahun terakhir dengan melemparkan pecahan-pecahan inti bintang ke arah Matahari dalam bentuk debu radiasi atau bahan yang lebih besar lainnya, seperti berbagai benda mirip komet.[71]

Daerah lingkungan sekitar

Lingkungan galaksi terdekat dari Tata Surya adalah sesuatu yang dinamai Awan Antarbintang Lokal (Local Interstellar Cloud, atau Local Fluff), yaitu wilayah berawan tebal yang dikenal dengan nama Gelembung Lokal (Local Bubble), yang terletak di tengah-tengah wilayah yang jarang. Gelembung Lokal ini berbentuk rongga mirip jam pasir yang terdapat pada medium antarbintang, dan berukuran sekitar 300 tahun cahaya. Gelembung ini penuh ditebari plasma bersuhu tinggi yang mungkin berasal dari beberapa supernova yang belum lama terjadi.[72]
Di dalam jarak sepuluh tahun cahaya (95 triliun km) dari Matahari, jumlah bintang relatif sedikit. Bintang yang terdekat adalah sistem kembar tiga Alpha Centauri, yang berjarak 4,4 tahun cahaya. Alpha Centauri A dan B merupakan bintang ganda mirip dengan Matahari, sedangkan Centauri C adalah kerdil merah (disebut juga Proxima Centauri) yang mengedari kembaran ganda pertama pada jarak 0,2 tahun cahaya.
Bintang-bintang terdekat berikutnya adalah sebuah kerdil merah yang dinamai Bintang Barnard (5,9 tahun cahaya), Wolf 359 (7,8 tahun cahaya) dan Lalande 21185 (8,3 tahun cahaya). Bintang terbesar dalam jarak sepuluh tahun cahaya adalah Sirius, sebuah bintang cemerlang dikategori 'urutan utama' kira-kira bermassa dua kali massa Matahari, dan dikelilingi oleh sebuah kerdil putih bernama Sirius B. Keduanya berjarak 8,6 tahun cahaya. Sisa sistem selebihnya yang terletak di dalam jarak 10 tahun cahaya adalah sistem bintang ganda kerdil merah Luyten 726-8 (8,7 tahun cahaya) dan sebuah kerdial merah bernama Ross 154 (9,7 tahun cahaya).[73]
Bintang tunggal terdekat yang mirip Matahari adalah Tau Ceti, yang terletak 11,9 tahun cahaya. Bintang ini kira-kira berukuran 80% berat Matahari, tetapi kecemerlangannya (luminositas) hanya 60%.[74] Planet luar Tata Surya terdekat dari Matahari, yang diketahui sejauh ini adalah di bintang Epsilon Eridani, sebuah bintang yang sedikit lebih pudar dan lebih merah dibandingkan mathari. Letaknya sekitar 10,5 tahun cahaya. Planet bintang ini yang sudah dipastikan, bernama Epsilon Eridani b, kurang lebih berukuran 1,5 kali massa Yupiter dan mengelilingi induk bintangnya dengan jarak 6,9 tahun cahaya.